WLS Gasses for High-Pressure Xenon Detectors

Victor M. Gehman for Dave Nygren LIDINE2013 May 30, 2013 Fermilab. Batavia, II

High-Pressure Gas Detectors

- Good for 0vββ and for dark matter!
 - Excellent energy resolution (critical for 0vββ, can also lower threshold for dark matter)
 - Track imaging for high-fidelity track topology (enhanced background rejection)
 - Small charge to light fluctuations (more precisely defined signal and background regions)
 - Can possibly extract nuclear recoil track direction (would be a game changer for dark matter!)

Detector Schematic

Asymmetric TPC with "Separated functions"

Energy Resolution

A. Bolotnikov, B. Ramsey | Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 360-370

Fig. 5. Density dependencies of the intrinsic energy resolution (%FWHM) measured for 662 keV gamma-rays.

A Recent Result!

A Recent Result!

Tracking Too!

Real track from ¹³⁷Cs γ-ray – reconstructed with SiPMs

What's the next step?

- Previous results were done with pure Xe (tracking plane had evaporated TPB)
- Track directionality would make a very strong case for direct detection of dark matter
- Most current experiments try for directionality by imaging the nuclear recoil track:
 - Very diffuse detectors (low target mass)
 - High energy threshold
 - Poor track image quality

A Different Approach!

- Use columnar recombination (CR) to extract track direction...
- Requires ionization electrons drift back through parent track:
 - Depends on angle between drift field and track direction
 - Other recombination types are independent of this angle

How to Maximize This Effect?

- Define "Columnarity," $C = \frac{R}{r_0}$
- Represents the maximal difference in recombination from track angle
- •In 0.05 g/cm³ xenon gas:
 - R = Nuclear recoil track range ≈ 2.1 μm
 - r_0 = Onsager radius $r_0 = \frac{e^2}{\epsilon E_e}$ (recombination distance) \approx 70 nm
 - e = electron charge, $\epsilon = gas dielectric constant$, $E_e = electron kinetic energy (usually taken as kT)$
 - $C \approx 30$ in this case (would like C > 10...)

So What Do We Need?

- We have:
 - Short tracks (~70 nm)... Don't lose electrons!
 - Small signals... Don't waste electrons or photons!
- Lots of energy deposited form nuclear recoils goes into primary excitations, but...
 - excitations don't contribute to the CR signal!
 - Use the Penning Effect: convert excitons to ions with a molecular additive so that these can contribute to CR too!
- Bonus: the same molecule can cool the electrons, thus increasing the recombination probability

But Wait, There's More!

- Remember that we are detecting ionization electrons with electro-luminescence light, therefore...
- Poor photon collection efficiency means poor charge collection efficiency!!!
- We can achieve nearly 100% coverage if we cover the inside of the TPC with WLS plastic panels read out with PMTs (or APD's, or SiPMs, etc.)
- But most WLS plastic panels are not very efficient in VUV–300 nm light is pretty close to optimal though.
- Must shift 173 nm photons to 300 nm photons in the gas!

But Wait, There's More!

- Remember that we are detecting ionization electrons with electro-luminescence light, therefore...
- Poor photon collection efficiency means poor charge collection efficiency!!!
- We can achieve nearly 100% coverage if we cover the inside of the TPC with WLS plastic panels read out with PMTs (or APD's, or SiPMs, etc.)
- But most WLS plastic panels are not very efficient in VUV–300 nm light is pretty close to optimal though.
- Must shift 173 nm photons to 300 nm photons in the gas!

Two Birds With One Stone

- To extract the CR signal from a HPXe gas detector, we need two things:
 - Penning additive to convert excitations into ionizations
 - WLS that absorbs at 173 nm and fluoresces at ≈ 300 nm

Provenance! Tri-methyl-amine (TMA) is a Penning gas known

to fluoresce efficiently at 300 nm!

What Might This Look Like?

What Might This Look Like?

What Might This Look Like?

Shorter Term R&D

- The "TEA Pot"
- Measures basic response characteristics
 - Parallel-plate ionization chamber with optical sensing using 4 PMTs that look at the gap from the sides
 - Will measure both light and charge as functions of density, electric field, and fraction of TMA/TEA

Shorter Term R&D

Shorter Term R&D

Conclusions

- This is a really unusual way to get at dark matter directionality
- Each step is quite plausible, but there are several unknowns to be addressed:
 - Penning efficiency of TMA?
 - Fluorescence efficiency of TMA in recombination?
 - Rate of ionic charge exchange?
 - Cooling rate of electrons after ionization?
- Initial simulations and R&D is underway!